2022-11-04 17:18:25 重庆华图 https://cq.huatu.com/ 文章来源:国家公务员考试网
【导读】重庆华图为您提供:2023国考准考证打印入口啥时间开通_国家公务员考试网(2),详细信息请阅读下文!【点击添加微信领取备考资料】,更多资讯请关注重庆华图微信公众号(CQhuatu),重庆华图咨询电话:023-67518090。
3、国考基本流程
国家公务员考试的流程为:公告发布、网上报名(提交报考申请、查询资格审查结果、查询报名序号、报名确认及缴费)、打印准考证、笔试、查成绩、面试和专业科目考试(面试前公开调剂、面试公告、资格复审、专业科目考试与面试、成绩计算)、体检和考察、公示拟录用人员名单。
5、国考考试内容
国考有笔试和面试2个阶段,通过笔试者方可参加面试,笔面综合成绩排在前列且在政审、体检等环节都达到要求者即被录用为国家公务员。
(1) 笔试
笔试包括公共科目与专业科目。公共科目为所有岗位必考科目,包括《行 政 职 业 能 力 测 验 》(简 称 行 测 )与《申 论 》两个科目。
(2)面试
国考基本采用结构化面试,税务系统近两年则采用无领导小组与结构化面试相结合的结构化小组面试形式。
——国家公务员考试备考——
2023国家公务员数量关系备考:教你快速搞定不定方程
不定方程是指未知数的个数多于独立方程个数的一类方程。一般形式为:ax+by=c,其中,ab≠0,且a,b,c均为正整数。一般题目中会规定关于x、y的取值条件,从而确定其取值。
不定方程在数量关系的考查中一直是很重要的题型之一,国考及联考常有涉及,尤其在国考中考查的频率较高。不定方程的考查方式比较固定,规律性强,在数量关系中反而是容易掌握的一种题型。那我们今天来一起了解不定方程的几种常见的解题方法:
1.代入排除
在行测考试中,数量关系均为客观题,每道题目都有对应的四个选项,在没有其它思路的情况下,最快解不定方程的方法就是根据题意列好方程后,结合选项依次进行代入验证,找到唯一符合题干条件的选项,即为正确答案。具体运用如下题:
【例】办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为多少个:
A.1、6
B.2、4
C.3、2
D.4、1
【分析】第一步,本题考查不定方程问题,用代入排除法解题。
第二步,设红、蓝文件袋数量分别为x、y,由恰好装满,可得7x+4y=29。可依次代入选项:
A选项,7×1+4×6≠29,排除;
B选项,7×2+4×4≠29,排除;
C选项,7×3+4×2=29,符合题意。
因此,选择C选项。
2.奇偶性
奇偶性是解不定方程很常见的方法。即结合式子中已知量的奇偶性来推导式子中未知数的奇偶性。但是在用好奇偶性解题之前要熟悉奇偶的性质:
(1)偶数±偶数=偶数;奇数±奇数=偶数;偶数±奇数=奇数
性质1:任意两个数性质相同(同奇或同偶),则这两个数两个数的和(差)一定为偶数;任意两个数性质相反(一奇一偶),则这两个数两个数的和(差)一定为奇数。逆推则
为奇反偶同。
偶数×偶数=偶数;奇数×奇数=奇数;偶数×奇数=偶数
性质2:任意两个数相乘,若可以确定其中一个数为偶数,那么这两个数的乘积一定为偶数。反之,任意两个奇数相乘,乘积一定为奇数,即有偶则偶。
结合以上的奇偶性质,在不定方程一般式中的ax,by,c三个量中,若已知ax和c或者已知by和c的奇偶性,则可推导剩余量的奇偶性,进一步确定x或y的取值。具体运用如下题:
【例】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?
A.36 B.37
C.39 D.41
【分析】第一步,本题考查不定方程问题。
第二步,设每名钢琴、拉丁舞老师分别带领学员x、y人,由共76人,可列不定方程5x+6y=76。根据奇偶特性,其中6y、76为偶数,则5x为偶数,故x既为偶数也为质数,2是唯一的偶质数,所以x=2,y=11,即每名钢琴老师带2名学员,每名拉丁舞老师带11名学员。
第三步,由所带学生数不变可得,剩余学员有4×2+3×11=41(人)。
因此,选择D选项。
3.尾数法
在不定方程ax+by=c中,当未知数(x,y)前面的系数以0或者5结尾时,可以考虑用尾数法来解不定方程。因为任何正整数与5的乘积其尾数只有0或5两种可能(其中5与偶数的乘积尾数为0,5与奇数的乘积尾数为5),任何正整数与0的乘积其尾数只能为0。基于这样的规律,我们就可以通过确定的尾数来判断未知数的取值。尾数法在解不定方程中使用频率较低,常常与奇偶性结合起来使用。具体运用如下题:
【例】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?
A.3 B.4
C.7 D.13
【分析】第一步,本题考查基础应用题,用不定方程解题。
第二步,设大、小包装盒各有x、y个,由大盒每个装12个、小盒每个装5个,可知12x+5y=99。根据奇偶特性,其中12x为偶数、99为奇数,故5y为奇数,可得y为奇数,所以,其尾数为5。此时12x尾数为9-5=4,可得x=2或x=7。
第三步,代入验证,当x=2时,y=15,符合共十多个盒子,此时15-2=13;当x=7时,y=3,不符合共十多个盒子(刚好十个)。故两种包装盒相差13个。
因此,选择D选项。
4.倍数(整除)法
倍数法是解不定方程较常用的方法。即通过观察不定方程ax+by=c中,ax或by与c之间是否有共同的公约数(或共同被某个非1的整数整除),从而判断x或y含某个因数来确定取值。例如,ax+by=c中,若ax为5的倍数且c也为5的倍数,那么就可确定by也为5的倍数,当b不是5的倍数时,则y为5的倍数,则y的取值可为5,10,15,20……;具体运用如下题:
【例】高校的科研经费按来源分为纵向科研经费和横向科研经费,某高校机械学院2015年前4个月的纵向科研经费和横向科研经费的数字从小到大排列为20、26、27、28、31、38、44和50万元。如果前4个月纵向科研经费是前3个月横向科研经费的2倍,则该校机械学院2015年第4个月的横向科研经费是多少万元?
A.26 B.27
C.28 D.31
【分析】第一步,本题考查不定方程问题。
第二步,设前3个月横向科研经费为x,第4个月横向科研经费为y,则前4个月纵向科研经费为2x。根据题意可得,x+y+2x=20+26+27+28+31+38+44+50,化简为3x+y=264。由于3x与264皆为3的倍数,故y必为3的倍数,结合选项,只有27符合。
因此,选择B选项。
2023年国家公务员笔试信息汇总 | |||||
报考程序 | 报考必备 | 国考笔试华图助力 | |||
公告解读 | 【公告解读峰会】【考试大纲】 |
课程优惠 行测备考 申论备考 图书资料 启航礼包 |
|||
网上报名 | 【报名时间10.25-11.3】【报名数据】 | ||||
职位选择 | 【职位下载】【可报岗位查询】 | ||||
报考指导 | 【报考指南】【专业参考目录】 | ||||
准考证 | 【打印时间11.29-12.4】【历年试题】 | ||||
辅导课程 | 【国考笔试课程】【系统提升班】 |
上一篇:2022国家公务员考试准考证打印入口什么时候开通_国家公务员考试网
下一篇:没有了
华图教育葱妹
重庆华图微信公众号