2022-12-13 15:13:13 重庆华图 https://cq.huatu.com/ 文章来源:华图教育
【导读】重庆华图为您提供:2023年重庆公务员行测高分技巧:数量关系中的数列构造,详细信息请阅读下文!如有疑问请加【2023重庆公务员上岸交流群:677564082】 ,更多重庆公务员备考指导/技巧/试题请关注重庆华图微信公众号(CQhuatu),重庆华图咨询电话:023-67518090。
数列构造是指根据题目描述的数列特征,构造一种极端情况,从而求解数列中某一项的最大值或者最小值。数列构造题目在国考数量关系题中时有出现,属于思路相对固定的题目,只要摸清它的窍门,往往可以手到擒来。那么,如何识别这种题目类型并迅速求解呢?且容我细细道来。
1.如何来识别数列构造题目?
数列构造通常是描述存在一系列数字(通常是正整数且各不相同),告诉你这些数字的总和,要你求其中某一个的最大值或者最小值。明显的特征是它的提问通常含有两个“最”字,即“最大(小)的那个数,它的最小(大)值是多少?”
2.如何来进行解题?
我们先举一个简单的例子:有4个正整数,它们各不相同,且总和是10,求最大的那个正整数的最小值是多少?解题步骤可以简单概括为四步:排序——定位——构造——求和。
排序即根据题目所说有几个数按从大到小进行排序,以避免后续列式的过程中出现遗漏。这里提到有4个数,我们可以先排序①②③④。
定位即将要求的数设为未知数。在这里我们要求最大的那个正整数,可以设第①个数字为x。
构造即是根据题目条件进行反向构造。由于总和10已经固定,要求第①个的 最 小值,即相当于其他三个数都要取最大值。正整数之间至少相差1,即第 ② 个数字最大为(x-1),第 ③ 个数字最大为(x-2),第④个数字最大为(x-3)。
求和即是将所有数字加起来等于题目说的总和,列方程求解。在这道题目中,我们可以列方程:x+(x-1)+(x-2)+(x-3)=10。解方程得x=4,即最大的那个正整数的最小值是4。
3.例题讲解
【2021年国考-地市-64】某地10户贫困农户共申请扶贫小额信贷25万元已知每人申请金额都是1000元的整数倍,申请金额最高的农户申请金额不超过申请金额最低农户的2倍,且任意2户农户的申请金额都不相同,问申请金额最低的农户最少可能申请多少万元信贷?
A.1.5 B.1.6
C.1.7 D.1.8
【答案】B
【解析】第一步,排序。题目中说有“10户”,按从大到小排序10个数。
第二步,定位。题目问“ 申请金额最低的农户 ”,设第⑩个数是x。
第三步,构造。要求 申请金额最低的农户的最少值,即其它①到⑨的数要最大。题目又提到“申请金额最高的农户申请金额不超过申请金额最低农户的2倍,且任意2户农户的申请金额都不相同”,因此其它①到⑨的数如下表所示:
① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
2x | 2x-1 | 2x-2 | 2x-3 | 2x-4 | 2x-5 | 2x-6 | 2x-7 | 2x-8 | x |
第四步,求和。注意统一单位,25万元=250千元。列方程可得:2x+(2x-1)+(2x-2)+(2x-3)+(2x-4)+(2x-5)+(2x-6)+(2x-7)+(2x-8)+x=250。化简可得19x=286,解得x≈15.05。x为最少是15.05的正整数,即x要向上取整,得x=16(千元)=1.6(万元)。
因此,选择B选项。
4 . 小结
数量构造属于特征较为明显,解题思路相对固定的一种题型(如下思维导图所示),在国考行测数量中是可以争取的,希望同学们能通过本文掌握此类题型 ,有效提分。
原文标题:2023年福建省考行测高分技巧:数量关系中的数列构造
文章来源:华图教育(MD5:fe393cbf09fcebb245a251973a1895fc)
(编辑:songxueying)下一篇:没有了
华图教育葱妹
重庆华图微信公众号